Advertisment Nexovas Cilnidipine
Indian Journal of Nephrology About us |  Subscription |  e-Alerts  | Feedback | Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Current Issue | Archives| Ahead of print | Search |Instructions |  Editorial Board  

Users Online:725

Official publication of the Indian Society of Nephrology
  Search
 
  
 ~  Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~Related articles
 ~  Article in PDF (677 KB)
 ~  Citation Manager
 ~  Access Statistics
 ~  Reader Comments
 ~  Email Alert *
 ~  Add to My List *
* Registration required (free)  

 
   Abstract
  Introduction
   Materials and Me...
  Results
  Discussion
  Conclusion
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed741    
    Printed67    
    Emailed0    
    PDF Downloaded179    
    Comments [Add]    

Recommend this journal

 


 
  Table of Contents  
ORIGINAL ARTICLE
Year : 2018  |  Volume : 28  |  Issue : 5  |  Page : 335-338
 

Effect of hemodialysis on corrected QT interval and QTc dispersion


1 Department of Nephrology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
2 Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
3 Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
4 Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India

Date of Web Publication10-Sep-2018

Correspondence Address:
J S Sandhu
Department of Nephrology, Dayanand Medical College and Hospital, Ludhiana - 141 001, Punjab
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijn.IJN_15_18

Rights and Permissions

  Abstract 


Hemodialysis patients are at higher risk of cardiovascular disease due to traditional and dialysis-related risk factors. Our aim was to study the effects of hemodialysis on the corrected QT interval (QTc) and QTc dispersion in chronic kidney disease (CKD) without clinically manifest heart disease. Two hundred cases of CKD on chronic intermittent hemodialysis of >3 months' duration were included in the study. Twelve-lead electrocardiography and samples for serum creatinine, potassium, calcium, and magnesium were taken before and after dialysis. The mean age of patients was 52.4 ± 17 years with male-to-female ratio of 3:1. QTc interval and QTc dispersion were prolonged in 47% and 59% before and 50% and 89% of patients after hemodialysis, respectively. The mean values of QTc were 433.4 ± 36.9 ms before and 451.4 ± 39.6 ms after hemodialysis (p = 0.001) and the mean values of QTc dispersion were 60.5 ± 19.3 ms before and 81.5 ± 24.4 ms after hemodialysis (p = 0.001). Similar pattern was observed in all etiological groups of CKD, except for QTc dispersion in malignancy-related CKD (p = 0.216). After hemodialysis, there was a significant fall in the mean values of serum potassium (p = 0.001), rise in serum calcium (p = 0.001), and no change in magnesium (p = 0.424). Patients with post hemodialysis QTc dispersion >74 ms had significantly low mean values of serum potassium and calcium as compared to <74 ms group. Large numbers of hemodialysis patients have a prolonged QTc interval and QTc dispersion with a significant increase in the mean values after hemodialysis. There is a significant fall in serum potassium and rise in serum calcium after dialysis.


Keywords: Calcium, corrected QT dispersion, hemodialysis, potassium


How to cite this article:
Sohal P M, Goel A, Gupta D, Aslam N, Sandhu J, Sandhu J S, John E E, Sharma D. Effect of hemodialysis on corrected QT interval and QTc dispersion. Indian J Nephrol 2018;28:335-8

How to cite this URL:
Sohal P M, Goel A, Gupta D, Aslam N, Sandhu J, Sandhu J S, John E E, Sharma D. Effect of hemodialysis on corrected QT interval and QTc dispersion. Indian J Nephrol [serial online] 2018 [cited 2018 Dec 13];28:335-8. Available from: http://www.indianjnephrol.org/text.asp?2018/28/5/335/238185





  Introduction Top


Cardiovascular disease is the major cause of death, accounting for 43% of all-cause mortality among hemodialysis patients. In addition to increased traditional risk factors, hemodialysis patients also have a number of nontraditional cardiovascular risk factors.[1] The QT interval is a measure of ventricular depolarization and repolarization. Prolonged QT interval is a predictor of cardiovascular death in healthy population.[2]

QTc dispersion is defined as the difference between the longest and shortest QTc interval on surface electrocardiography (ECG). It has been proposed as a noninvasive ECG parameter that might predict an increased risk of malignant arrhythmias.[3] Dialysis patients have prolonged QTc interval and QTc dispersion.[4] A single session of hemodialysis might further increase QTc dispersion in both children and adults.[5],[6],[7],[8] Moreover, QTc interval may be a predictor of ventricular arrhythmia and cardiovascular mortality in chronic kidney disease (CKD) and dialysis patients.[9] Most of the earlier reported studies had smaller number of patients, and the cardiovascular comorbidities due to uremia were not excluded.

The aim of our study was to determine the effects of hemodialysis on the corrected QT interval and QTc dispersion in patients of CKD without any clinically manifest heart disease in a large cohort.


  Materials and Methods Top


This prospective study was conducted in the dialysis unit of the department of nephrology of our tertiary care hospital. The study was cleared by the institutional ethics committee on human research. Two hundred, randomly selected, dry weight, stable CKD patients on chronic intermittent hemodialysis of at least 3-month duration were included in the study. All patients received 4-h thrice-a-week hemodialysis with identical parameters using polysulfone dialyzers and bicarbonate dialysate containing sodium 136 mEq/L, potassium 2.6 mEq/L, calcium 6.01 mg/dl, magnesium 2.43 mg/dl, acetate 3.0 mEq/L, and bicarbonate 35 mEq/L. The exclusion criteria included patients with known heart disease (ischemic, valvular, or hypertensive heart disease or cardiomyopathy), atrial fibrillation, supraventricular or ventricular ectopics, paroxysmal supraventricular tachycardia, and left bundle branch block; patients on antiarrhythmic drugs known to prolong the QT interval (e.g., quinidine and amiodarone) and beta blockers; and those where end of T wave was not clear in more than three leads. All our patients had negative history of chest pain, absence of regional wall motion abnormalities, and gross left ventricular hypertrophy on echocardiography and had a normal left ventricular ejection fraction of >50%.

After taking written informed consent, a detailed history into duration and etiology of CKD and drug intake was taken and detailed examination was done in each case. Demographic characteristics including age, sex, weight, height, body mass index, body surface area, duration on chronic intermittent hemodialysis, and interdialytic weight gain were recorded in each patient. Blood pressure was recorded before and after hemodialysis. Twelve-lead ECG performed at 10 mm/mv and 25 mm/s was recorded before and after hemodialysis session. The QT interval was measured from the onset of the QRS complex to the end of T wave. When the T wave was inverted, the endpoint was taken where the trace returned to the T_P baseline, and when U waves were present, the end of the T wave was not clear in a particular lead and then it was excluded from the analysis.

Three successive QT interval measurements were done in each of the 12 leads and the mean value was calculated. The maximum QT interval was corrected for heart rate (QTc max) using Bazett's formula: QTc = QT/√(RR).[10] Serum potassium, serum calcium, and serum magnesium were measured in each patient before starting and after closing the hemodialysis.

Statistical analysis

Results were expressed as mean ± standard deviation for continuous variables and percentages for categorical data. The difference between the mean values between pre- and post dialysis was analyzed using ANOVA. Analysis employed the Student's t-test for the paired data to determine the significance of differences. Univariate correlation coefficients were examined to assess the effects of electrolyte and blood pressure changes on the QT dispersion. p < 0.05 was considered statistically significant. All statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS) for windows, Version 16.0 (SPSS, Inc., Chicago, IL, USA).


  Results Top


The study included 200 patients (141 males) with a mean age of 52.4 ± 17 and age range of 20–82 years. Predominant etiologies of CKD were diabetic nephropathy (37%), chronic glomerulonephritis (24%), and hypertensive nephrosclerosis (12%). Exact etiology could not be ascertained in 9% of patients. Seven cases of malignancy-related CKD included five cases of myeloma cast nephropathy and one case each of renal cell carcinoma and carcinoma cervix [Figure 1] and [Figure 2].
Figure 1: Patient characteristics – age and sex

Click here to view
Figure 2: Etiology of chronic kidney disease

Click here to view


Prolonged corrected QT interval (QTc >440 ms in males and >460 ms in females) was seen in 93 (46.5%) before and 99 (49.5%) after hemodialysis. Prolonged QTc dispersion (>60 ms) was observed in 118 (59%) before and 177 (88.5%) after hemodialysis. On comparing the mean values of various clinical, biochemical, and ECG parameters before and after hemodialysis, there was a significant increase in systolic blood pressure, heart rate, serum calcium, QTc interval, QTc maximum, and QTc dispersion and decrease in serum potassium after hemodialysis [Table 1].
Table 1: Clinical, biochemical, and electrocardiographic parameters before and after hemodialysis (n=200)

Click here to view


On comparing the mean values of ECG parameters, there was a significant rise in QTc and QTc dispersion after hemodialysis in all etiological groups of CKD, except for an insignificant rise in QTc dispersion in malignancy-related CKD [Table 2].
Table 2: Corrected QT interval and corrected QT dispersion in relation to etiology of chronic kidney disease

Click here to view


On comparing the mean values of various clinical, biochemical, and ECG parameters post hemodialysis in patients with QTc dispersion >74 ms with those with QTc dispersion <74 ms, the mean values of serum potassium and serum calcium were found to be significantly low [Table 3].
Table 3: Comparison of various variables with corrected QT interval dispersion <74 ms versus >74 ms after hemodialysis

Click here to view



  Discussion Top


Our study showed a marked variability in QTc interval and QTc dispersion. Approximately half of our patients had prolonged QTc interval before and after the hemodialysis. Prolonged QTc dispersion was seen even more commonly, i.e., 59% before and 88% after hemodialysis. Hemodialysis patients carry a large burden of cardiovascular disease, the most onerous being the high risk of sudden cardiac death. In addition to the traditional cardiac risks present in patients with end-stage kidney disease, dialysis-related arrhythmic triggers may also be significant.[11]

Prolonged QTc interval is a risk factor for sudden cardiac death. Our study, as also reported by others,[5],[8],[12] has shown a highly significant increase in the mean values of both QTc interval and QTc dispersion after hemodialysis in CKD patients without significant heart disease. On the contrary, Covic et al.[13] reported that hemodialysis increases QTc interval, but not QTc dispersion in end-stage renal disease without manifest cardiac disease.

Our results indicate that the nonhomogeneity of regional ventricular repolarization increases during hemodialysis, which is suggested by increased QTc maximum interval and QTc interval dispersion.

The mechanism of QTc dispersion prolongation in CKD patients during hemodialysis is a matter of speculation. Interstitial myocardial fibrosis and calcium deposition in uremic hearts which increases myocardial nonhomogeneity have been shown on autopsy [14] and quantitative echocardiography. Patients with chronic renal failure had a greater QTc interval and QTc dispersion compared with healthy controls.[4]

Dialysis patients with QTc dispersion longer than 74 ms were shown to be at risk of serious ventricular arrhythmias or sudden death.[9] More than half (54%) of our patients had QTc dispersion >74 ms, and the mean values of serum potassium and calcium in these patients were significantly low when compared with those with QTc dispersion <74 ms. These findings have been substantiated in many earlier reports,[15],[16],[17] demonstrating that QTc dispersion inversely correlated with serum potassium and calcium. Genovesi et al.[18] compared the effect of six dialysis baths with different ion compositions on the QTc interval duration and observed that the longest QTc interval duration occurred with the low-potassium/low-calcium dialysate, whereas the shortest occurred with the high-potassium/high-calcium dialysate. Interestingly, like the findings of our study, they reported an inverse correlation between the QT interval changes and serum potassium and calcium levels, but not with serum magnesium.

A large cohort of 200 hemodialysis patients of CKD without clinically manifest heart disease is the strength of our study.


  Conclusion Top


The results of this study have shown that a significant number of patients of CKD on chronic maintenance hemodialysis have prolonged QTc interval and QTc interval dispersion with highly significant increase after hemodialysis. The prolonged QTc dispersion was inversely correlated with serum potassium and calcium. Post hemodialysis ECG would effectively identify patients whose repolarization surrogates increase after dialysis sessions. In these individuals, a dialysis regimen can be adopted which is less likely to affect ventricular repolarization.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Kanbay M, Afsar B, Goldsmith D, Covic A. Sudden death in hemodialysis: An update. Blood Purif 2010;30:135-45.  Back to cited text no. 1
    
2.
Higham PD, Campbell RW. QT dispersion. Br Heart J 1994;71:508-10.  Back to cited text no. 2
    
3.
Wu VC, Lin LY, Wu KD. QT interval dispersion in dialysis patients. Nephrology (Carlton) 2005;10:109-12.  Back to cited text no. 3
    
4.
Kantarci G, Ozener C, Tokay S, Bihorac A, Akoğlu E. QT dispersion in hemodialysis and CAPD patients. Nephron 2002;91:739-41.  Back to cited text no. 4
    
5.
Ozdemir D, Mese T, Agin H, Calkavur S, Bak M. Impact of haemodialysis on QTc dispersion in children. Nephrology (Carlton) 2005;10:119-23.  Back to cited text no. 5
    
6.
Morris ST, Galiatsou E, Stewart GA, Rodger RS, Jardine AG. QT dispersion before and after hemodialysis. J Am Soc Nephrol 1999;10:160-3.  Back to cited text no. 6
    
7.
Malhis M, Al-Bitar S, Farhood S, Zaiat KA. Changes in QT intervals in patients with end-stage renal disease before and after hemodialysis. Saudi J Kidney Dis Transpl 2010;21:460-5.  Back to cited text no. 7
[PUBMED]  [Full text]  
8.
Khosoosi Niaki MR, Saravi M, Oliaee F, Akbari R, Noorkhomami S, Bozorgi Rad SH, et al. Changes in QT interval before and after hemodialysis. Caspian J Intern Med 2013;4:590-4.  Back to cited text no. 8
    
9.
Beaubien ER, Pylypchuk GB, Akhtar J, Biem HJ. Value of corrected QT interval dispersion in identifying patients initiating dialysis at increased risk of total and cardiovascular mortality. Am J Kidney Dis 2002;39:834-42.  Back to cited text no. 9
    
10.
Bazett H. An analysis of time relation of the electrocardiogram. Heart 1920;7:353-70.  Back to cited text no. 10
    
11.
Makar MS, Pun PH. Sudden cardiac death among hemodialysis patients. Am J Kidney Dis 2017;69:684-95.  Back to cited text no. 11
    
12.
Cupisti A, Galetta F, Morelli E, Tintori G, Sibilia G, Meola M, et al. Effect of hemodialysis on the dispersion of the QTc interval. Nephron 1998;78:429-32.  Back to cited text no. 12
    
13.
Covic A, Diaconita M, Gisbeth-Tatomir P, Covic M, Botezan A, Ungureanu G, et al. Haemodialysis increases QTc interval but not QTc dispersion in ESRD patients without manifest cardiac disease. Nephrol Dial Transplant 2002;17:2170-7.  Back to cited text no. 13
    
14.
Ansari A, Kaupke CJ, Vaziri ND, Miller R, Barbari A. Cardiac pathology in patients with end-stage renal disease maintained on hemodialysis. Int J Artif Organs 1993;16:31-6.  Back to cited text no. 14
    
15.
Di Iorio B, Torraca S, Piscopo C, Sirico ML, Di Micco L, Pota A, et al. Dialysate bath and QTc interval in patients on chronic maintenance hemodialysis: Pilot study of single dialysis effects. J Nephrol 2012;25:653-60.  Back to cited text no. 15
    
16.
Näppi SE, Virtanen VK, Saha HH, Mustonen JT, Pasternack AI. QTc dispersion increases during hemodialysis with low-calcium dialysate. Kidney Int 2000;57:2117-22.  Back to cited text no. 16
    
17.
Sabzghabaei F, Heydariezade SA, Joodat RS. The effects of different electrolyte composition in dialysate on QTc interval; A controlled trial. J Renal Inj Prev 2016;5:153-6.  Back to cited text no. 17
    
18.
Genovesi S, Dossi C, Viganò MR, Galbiati E, Prolo F, Stella A, et al. Electrolyte concentration during haemodialysis and QT interval prolongation in uraemic patients. Europace 2008;10:771-7.  Back to cited text no. 18
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
Print this article  Email this article
 

    

Indian Journal of Nephrology
Published by Wolters Kluwer - Medknow
Online since 20th Sept '07