Advertisment Nexovas Cilnidipine
Indian Journal of Nephrology About us |  Subscription |  e-Alerts  | Feedback | Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Current Issue | Archives| Ahead of print | Search |Instructions |  Editorial Board  

Users Online:1066

Official publication of the Indian Society of Nephrology
  Search
 
  
 ~  Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~  Article in PDF (505 KB)
 ~  Citation Manager
 ~  Access Statistics
 ~  Reader Comments
 ~  Email Alert *
 ~  Add to My List *
* Registration required (free)  

 
  Conclusion
   References
   Article Tables

 Article Access Statistics
    Viewed292    
    Printed28    
    Emailed0    
    PDF Downloaded33    
    Comments [Add]    

Recommend this journal

 


 
  Table of Contents  
LETTER TO EDITOR
Year : 2019  |  Volume : 29  |  Issue : 3  |  Page : 215-217
 

Use of commercially available multiplex polymerase chain reaction in detection of organism in culture negative peritonitis in peritoneal dialysis


1 Department of Nephrology, KG Hospital and Postgraduate Institute, Coimbatore, Tamil Nadu, India
2 Department of Nephrology, KG Hospital and Postgraduate Institute, Coimbatore; Department of Nephrology, Cauvery Hospital, Chennai, Tamil Nadu, India

Date of Web Publication9-May-2019

Correspondence Address:
I Veerappan
KG Hospital and Postgraduate Institute, Coimbatore, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijn.IJN_383_17

Rights and Permissions



How to cite this article:
Veerappan I, Balasubramaniam R, Sethuraman R, Ranjan S. Use of commercially available multiplex polymerase chain reaction in detection of organism in culture negative peritonitis in peritoneal dialysis. Indian J Nephrol 2019;29:215-7

How to cite this URL:
Veerappan I, Balasubramaniam R, Sethuraman R, Ranjan S. Use of commercially available multiplex polymerase chain reaction in detection of organism in culture negative peritonitis in peritoneal dialysis. Indian J Nephrol [serial online] 2019 [cited 2019 Jul 16];29:215-7. Available from: http://www.indianjnephrol.org/text.asp?2019/29/3/215/252211




Sir,

Peritoneal dialysis (PD) is an underutilized mode of dialysis therapy worldwide. Despite the reduction in peritonitis rate, peritonitis continues to be the main cause of technique failure. In addition, it is an important cause of morbidity and mortality in patients in PD. The most common organisms associated with PD peritonitis reported worldwide in descending order are coagulase-negative Staphylococcus species, Staphylococcus aureus, Streptococci, Enterobacteriaceae, non-fermenting gram-negative bacilli (GNB).[1] Paradoxically in India, GNB is the major cause of peritonitis. The incidence of culture-negative peritonitis (CNP) in India varies between 18.2 and 64.7% [Table 1].[2],[3],[4]
Table 1: Culture negative peritonitis in India

Click here to view


It is believed that this CNP is due to gram-positive cocci. Polymerase chain reaction (PCR)-based detection of organisms in continuous ambulatory peritoneal dialysis (CAPD) peritonitis is gaining popularity due to rapid detection of organisms than what the conventional culture techniques can offer. However, it is largely restricted to research settings. Commercially available multiplex PCR has been used in early diagnosis of meningitis, neonatal septicemia.[5] Commercially available multiplex PCR-based methods are seldom used in the diagnosis of peritonitis in India.

In a prospective study done between January 2014 and June 2016 in our hospital, all the PD effluent from all the patients with suspected PD peritonitis was subjected to lysis centrifugation (25 ml) and inoculated in blood agar, McConkey agar, chocolate agar, thioglycolate broth, BACTEC blood culture bottle (10 ml) and identification was done by Vitek-2 identification system. With the consent of the patients commercially available mPCR-based detection (Xcyton (R)) was done. The technology comprises rapid multiplex amplification and accurate identification of the virulence-associated genes of the causative agents. The genetic material of causative agent is isolated from the CAPD effluent and there is a simultaneous amplification of the specific signature genes of all probable agents, followed by syndrome-specific hybridization. Syndrome-specific hybridization is a kind of DNA amplification technique. Gene amplification allows higher sensitivity and renaturation of amplified signature gene to its chemically identified complementary gene sequence on the syndrome evaluation system, which allows for higher specificity of test.

Of the 85 prevalent patients, eight patients (9.4%) died during the study period. After an episode of peritonitis two (2.3%) of those patients died within 2 months. The catheter was removed in 7 (8.2%) patients. The mean patient survival was 30 ± 2 months and mean technique survival was 24 ± 3 months. There were 49 episodes of peritonitis in 38 patients at a rate of 0.15 episodes/patient-year. Out of 49 cultures, 36 (73.5%) were positive. The mPCR was sent in 27 episodes and consent was denied in 22 episodes of peritonitis and mPCR was not sent. Out of these 27 episodes where mPCR was done, an organism was isolated in 24 cases. The sensitivity of mPCR in detecting an organism in the setting of a clinical CAPD peritonitis was 88.8% (24/27). The mPCR identified an organism in additional 8 (16.3%) of the cultures. By using both conventional culture technique and mPCR technique, 44 out of 49 cultures (90%) were positive. Thus, the CNP rates could be brought down to 10% instead of 26.5%. The GNB were seen in 23 out of 44 episodes (52%) and gram-positive bacteria were seen in 12 out of 44 episodes (27%), aspergillosis in 3 out of 44 episodes (7%) and atypical mycobacterium was seen in 1 out of 44 episodes (2%) [Table 2]. Both the conventional culture technique and mPCR-based technique identified same organism in 10/12 [83%] of instances. However, both the techniques showed different organism in three instances.
Table 2: Organisms causing peritonitis in patients undergoing peritoneal dialysis

Click here to view


It has been shown by Prasad et al.[6] and Kim et al.[7] that broad-range PCR-based detection can identify 100% cases of peritonitis [Table 2]. However, lack of commercially available mPCR technology had limited their use to only research facilities as in the above two studies. We have shown that any PD unit can use the commercially available mPCR (Xcyton (R)) and reduce their CNP rates to <10%. In stable patients and in centers with high culture positive rates by the existing conventional culture techniques, the role of mPCR may be limited to only cases with CNP.


  Conclusion Top


Centers with >20% culture-negative peritonitis can consider mPCR-based tests in addition to improving their culture techniques. The mPCR technique yields result in 24 h, and we recommend its use only in cases which are culture negative by routine technique.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Bunke CM, Brier ME, Golper TA. Outcomes of single organism peritonitis in peritoneal dialysis: Gram negatives versus gram positives in the network 9 peritonitis study. Kidney Int 1997;52:524-9.  Back to cited text no. 1
    
2.
Abraham G, Gupta A, Prasad KN, Rohit A, Bhalla AK, Billa V, et al. Microbiology, clinical spectrum and outcome of peritonitis in patients undergoing peritoneal dialysis in India: Results from a multicentric, observational study. Indian J Med Microbiol 2017;35:491-8.  Back to cited text no. 2
[PUBMED]  [Full text]  
3.
Prasad KN, Singh K, Rizwan A, Mishra P, Tiwari D, Prasad N, et al. Microbiology and outcomes of peritonitis in Northern India. Perit Dial Int 2014;34:188-94.  Back to cited text no. 3
    
4.
Prasad N, Gupta A, Sharma RK, Prasad KN, Gulati S, Sharma AP, et al. Outcome of gram-positive and gram-negative peritonitis in patients on continuous ambulatory peritoneal dialysis: A single-center experience. Perit Dial Int 2003;23 Suppl 2:S144-7.  Back to cited text no. 4
    
5.
Bhat BV, Prasad P, Ravi Kumar VB, Harish BN, Krishnakumari K, Rekha A, et al. Syndrome evaluation system (SES) versus blood culture (BACTEC) in the diagnosis and management of neonatal sepsis – A randomized controlled trial. Indian J Pediatr 2016;83:370-9.  Back to cited text no. 5
    
6.
Prasad N, Singh K, Gupta A, Prasad KN. Isolation of bacterial DNA followed by sequencing and differing cytokine response in peritoneal dialysis effluent help in identifying bacteria in culture negative peritonitis. Nephrology (Carlton) 2018;23:148-54.  Back to cited text no. 6
    
7.
Kim SH, Jeong HS, Kim YH, Song SA, Lee JY, Oh SH, et al. Evaluation of DNA extraction methods and their clinical application for direct detection of causative bacteria in continuous ambulatory peritoneal dialysis culture fluids from patients with peritonitis by using broad-range PCR. Ann Lab Med 2012;32:119-25.  Back to cited text no. 7
    



 
 
    Tables

  [Table 1], [Table 2]



 

Top
Print this article  Email this article
 

    

Indian Journal of Nephrology
Published by Wolters Kluwer - Medknow
Online since 20th Sept '07