Advertisment
Indian Journal of Nephrology About us |  Subscription |  e-Alerts  | Feedback | Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Current Issue | Archives| Ahead of print | Search |Instructions |  Editorial Board  

Users Online:506

Official publication of the Indian Society of Nephrology
  Search
 
  
 ~  Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~Related articles
 ~  Article in PDF (1,122 KB)
 ~  Citation Manager
 ~  Access Statistics
 ~  Reader Comments
 ~  Email Alert *
 ~  Add to My List *
* Registration required (free)  

 
   Abstract
  Introduction
   Therapeutic Modu...
   Role of Oral Bic...
  N-Acetyl Cysteine
  Discussion
  Conclusion
   Intestinal Flora...
   Conservative Man...
   References
   Article Figures

 Article Access Statistics
    Viewed1243    
    Printed330    
    Emailed0    
    PDF Downloaded385    
    Comments [Add]    

Recommend this journal

 


 
  Table of Contents  
REVIEW ARTICLE
Year : 2020  |  Volume : 30  |  Issue : 4  |  Page : 256-260
 

Dietary management in slowing down the progression of CKDu


1 Department of Nephrology, Madras Medical Mission Hospital, Chennai, Tamil Nadu, India
2 Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical, Sciences, Lucknow, Uttar Pradesh, India
3 Department of Nephrology, Goa Medical College and Hospital, Goa, India
4 Department of Nephrology, Pondicherry Institute of Medical Sciences, Pondicherry, India

Date of Submission27-Nov-2018
Date of Acceptance07-May-2019
Date of Web Publication27-Dec-2019

Correspondence Address:
Dr. Georgi Abraham
Department of Nephrology, Madras Medical Mission Hospital, 4-A, Dr J.J Nagar, Mogappair, Chennai, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijn.IJN_366_18

Rights and Permissions

  Abstract 


Chronic kidney disease of unknown etiology (CKDu) is an emerging entity in the South Asian region. This predominately affects the farming community belonging to the lower socioeconomic status.CKDu being a progressive condition often leads to end-stage renal failurerequiring renal replacement therapy (RRT). Due to the high cost and limited availability of RRT in many areas of geographical locations in India and worldwide, there is an unmet need to slow down the progression of CKDu. The intestinal microbiota is different in patients with CKD, with low levels of beneficial bacteria such as Lactobacillus and Bifidobacteria. Prebiotics and probiotics modify the intestinal microbiota and thereby slow down the progression. Soda bicarbonate therapy is cheap and cost-effective in slowing down the progression of CKDu in a subset of patients. There is also evidence of the beneficial effect of N-acetyl cysteine in early stages of CKD and it should benefit CKDu also. Dietary interventions to prevent dehydration, by providing uncontaminated drinking water, sufficient protein containing diet with adequate calories, and tailored salt intake to prevent hypotension, are necessary compared to other causes of CKD.The objective is to prevent malnutrition, and uremic symptoms. Early diagnosis and prompt intervention may delay the progression of CKDu in the early stages.


Keywords: CKDu, malnutrition, nutritional therapy


How to cite this article:
Anupama PH, Prasad N, Nzana VB, Tiwari J P, Mathew M, Abraham G. Dietary management in slowing down the progression of CKDu. Indian J Nephrol 2020;30:256-60

How to cite this URL:
Anupama PH, Prasad N, Nzana VB, Tiwari J P, Mathew M, Abraham G. Dietary management in slowing down the progression of CKDu. Indian J Nephrol [serial online] 2020 [cited 2020 Sep 21];30:256-60. Available from: http://www.indianjnephrol.org/text.asp?2020/30/4/256/274117





  Introduction Top


The first report by the CKD registry documentsprevalence rate of 16% for chronic kidney disease of unknown etiology (CKDu) in India with 21.3% in the southern part of India.[1] Uddanam in Srikakulam district consisting of the mandals of Kaviti, Sompeta, Kanchili, Ithapuram, Palas, and Vajrapukotturu and Prakasham district of Andhra Pradesh, Goa, and Odisha [Figure 1] have higher prevalence of CKDu especially among the younger farming population.[2] Several causative associations such as farming occupation, exposure to residual pesticides, high content of cadmium and silica in the drinking water, and genetic predisposition have been thought to be involved in the pathogenesis of CKDu.[3]
Figure 1: Clockwise top left : Andra Pradesh, Goa, Odisha

Click here to view



  Intestinal Flora among Healthy Individuals and in Patients With CKD Top


There is a paucity of data on intestinal microflora in South Asian population in health and disease states. The human gut harbors more than 100 trillion bacterial cells in healthy individuals, which is predominately rich in bacteria such as Lactobacillus and Bifidobacteria. Whereas in uremicpatients, higher levels of pathogens such as Clostridia, Enterobacteria sp., and Pseudomonas sp. are found, with low level of Lactobacillus and Bifidobacteria.[4] Patients with end-stage renal disease (ESRD) are also at a higher risk of Clostridium difficile–associated diarrhea.

Dysbiosis refers to an imbalance in the composition of the gut microbiome. Increased secretion and hydrolysis of urea leads to excessive formation of ammonia, thereby affecting the growth of gut commensal bacteria. Gut bacteria produces endotoxins which lead to an inflammatory response in the host organism. Moreover, protein fermentation by the gut microbes produces toxic metabolites, such as p-cresoland indoxyl sulfate.[5] P-cresol is largely conjugated to p-cresylsulfate (PCS) in the intestinal wall and subsequently to p-cresyl glucuronide in the liver.[5] In CKDu like other CKD, the barrier function of the gut is disrupted causing translocation of the endotoxins and bacterial metabolites into the systemic circulationwhich contributes to the uremic toxicity, inflammation, associated cardiovascular disease, and progression of CKD.[5] The concentration of indoxyl sulfate and PCS in the serum is negatively correlated with kidney function.[6] The colonic transit time is approximately 14 h among South Asians. However, in patients with any CKD, the transit time is further prolonged, contributing to increased absorption of uremic substances. Furthermore, vitamin K deficiency or insufficiency is common among patients with any CKD due to decreased synthesis by[7],[8]Bacteroides fragilis, Bifidobacteria, Clostridium sp, and Streptococcus faecalis.

Hence, bacterial metabolism-based interventions may be of therapeutic importance in any CKD including CKDu [Figure 2].
Figure 2:Gut microbiota in healthy individuals and in CKD patients

Click here to view


Sources of prebiotics include breast milk, soybeans, raw oats, unrefined wheat, unrefined barley, non digestible carbohydrates, and in particular nondigestible oligosaccharides.[9]

The most commonly used probiotic strains are Bifidobacterium, Lactobacillus rhamnosus, Lactobacillus reuteri and certain strains of Lactobacillus casei, Saccharomycesboulardii, and Bacillus coagulans. Foods containing probiotics include fermented dairy products such as yogurt, kefir, and cheese.


  Therapeutic Modulation of Gut Microbiome Top


Prebiotics promote growth of Bifidobacteria and Lactobacillus species, whereas they reduce certain bacteria such as Bacteroidssp, Clostridia sp, and Enterobacteria.[5] Oligofructose-enriched inulin promotes growth of Bifidobacteria sp, mediates weight loss, reduces inflammation, and improves metabolic function [Figure 2].[5] Meijers et al. reported a decrease in serum concentration of p-cresol after oral intake of oligiofructose-enriched inulin in hemodialysis patients.[10] High dietary fiber consumption lowers the risk of inflammation and reduces mortality in patients with any CKD.[11]Streptococcus thermophilus (KB19), Lactobacillus acidophilus (KB27), and Bifidobacterium longum (KB31) produce bacteriocins, namely, lactacin and bisin which inhibit the growth of pathogens,[12],[13],[14] thereby reducing generation of uremic toxins. Streptococcus thermophiles metabolizes urea, uric acid, and creatinine. Bifidobacterium longum reduces the level of protein-bound uremic toxins such as phenols and cresols.


  Role of Oral Bicarbonate Supplementation Top


Metabolic acidosis is a common complication in advanced stages of any CKD. This is often associated with increased protein catabolism due to the upregulation of the ubiquitin-proteasome system, excessive oxidation of branched chain amino acids, and reduced synthesis of visceral proteins including albumin.[15] In a randomized, prospective study in Londonby de Brito-Ashurst et al., 134 patients with creatinine clearance of 30–15 mL/min/1.73 m2 was given either oral sodium bicarbonate tablets 600 mg thrice daily dose adjusted to achieve and maintain HCO3 level ≥23 mmol/L or routine standard care. Serum bicarbonate was measured every 2 months. The rate of decline in creatinine clearance in stage 4 CKD was found to be lower among individual on bicarbonate therapy (1.88 mL/min/1.73 m2) when compared with the control group (5.93 mL/min/1.73 m2).[15] Oral bicarbonate supplementation is an affordable and accessible means of maintaining serum bicarbonate >22 mmol/L.


  N-Acetyl Cysteine Top


N-acetyl cysteine (NAC) use reduced the risk of progression of CKD of any etiology to ESRD significantly (18%).[16] However, the mechanism by which NAC reduces the progression of CKD to ESRD is unclear. It may be attributed to the antioxidant and vasodilatory nature of NAC.[16] Prolonged duration of administration and higher dosage of NAC increase its renal protective effect.[16],[17] Due to its low cost, wide availability, and ease of administration, it is widely accepted.


  Conservative Management Of CKDu Top


Consumption of uncontaminated water, avoidance of nephrotoxic drugs, chewing practices with concoction, and limited exposure to pesticides and agrochemicals[2] are some of the measures indelaying the progression of CKDu. Supportive care should include anemia correction, skilled dietician advice, and regular follow-up. Prebiotics and probiotics may be effective in partially reducing the colonic transit time. Hence, slowing the progression of CKDu. Soda bicarbonate therapy and NAC will provide value to the management of CKDu in low-resource setting.[15]

Dietary advice

As CKDu is a nonprotienuric disease, dietary advice of protein intake with 0.6 g/kg/day or a very low protein diet of 0.3 g/kg/day with ketoanlogues, 30–35 kCal/kg/day supplemented with micro nutrients may slow down the progression by reduction in serum phosphate and FGF-23 levels.[18] As in CKD low protein diet would reduce urea production, advanced glycation end products, and waste products of protein metabolism such as indoxyl sulfate, PCS, and trimethylamine N-oxide.[19]


  Discussion Top


A review of literature showed several studies analyzing the association of prebiotics and probiotics with CKD of other known etiology but none with CKDu. Use of prebiotics and probiotics has been proven to slow down the progression of CKD, and the same may be applied in patients with CKDu.

Ranganathan conducted a 6-month prospective clinical trial assessing the biochemical and clinical effects of an oral probiotics [90 billion colony-forming units (CFUs)] in 16 stage 3 and stage 4 patients with CKD, out of which 13 completed the study. The major outcome included a reduction in blood urea nitrogen (BUN), serum creatinine, and uric acid.[20]

Similarly, Paola Vanessa et al. conducted a study on the effect of probiotics on BUN levels in 30 patients with stage 3 and stage 4 CKD. The study was aimed to determine the effectiveness of two dosing of Lactobacillus casei Shirota, 8 × 109 CFUs and 16 × 109 CFUs in achieving a decrease in the serum urea concentration. Patients with CKD show an increase in aerobic bacteria which produce uremic toxins in the bowel, with decreased anaerobic bacteria such as Lactobacillus and Bifidobacteria. Patients were followed up for 8 weeks on the probiotic supplementation. A decrease of more than 10% was found in the concentration ofblood urea and serum creatinine, noted in the population treated with higher dose of probiotics.[21]

Rathi et al. conducted a study administering enteric coatedgelatin capsules containing lyophilized Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacterium longum in a dose of 15 million CFUs along with lactitol monohydrate as prebiotic to 30 predialysis CKD patients. The results showed significant improvement in various parameters of CKD.[22]

Jia et al. conducted a meta-analysis that showed probiotics supplementations may reduce the levels of PCS and elevate the levels of IL-6 which are found to be benificial.[23],[24]

According to the WHO and the FAO (2002), “Probiotics may theoretically be responsible for 4 types of side effects such as systemic infections, deleterious metabolic activities, excessive immune stimulation in susceptible individuals and gene transfer.”

Most patients with CKDu belong to lower socioeconomic status and they have chronic tubulointerstitial disease. Tubulointerstitial disease which is progressive; dehydration and salt loss is highly probable, and protein energy malnutrition with micronutrient deficiencies are not addressed in this CKDu lower socioeconomic strata population. Dietary advice targeted to this population is an important critical component of the treatment. Patients with CKDu are at high risk of dehydration and dehydration-related acute on chronic kidney injury due to their tubulointerstitial diseases. Special diet catering to the communities where CKDu prevalence is high, providing appropriate calories and proteins as per stage of CKD, should be emphasized.[25],[26]


  Conclusion Top


Prebiotics and probiotics alter the microbiome of the gastrointestinal system, thereby reducing the production of uremic toxins, aid in slowing down the progression of CKD. Soda bicarbonate therapy ameliorates any CKD progression. Nutritional monitoring and targeted nutritional therapy, as per the critical needs of the vulnerable CKDu patients, is of utmost importance in preventing malnutrition, dehydration, and uremic symptoms. There is an unmet need to look at the etiology of CKDu in the South Asian region and tailor the nutritional therapy in the low-resource setting.



Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Rajapurkar MM, John GT, Kirpalani AL, Abraham G, Agarwal SK, Almeida AF, et al. What do we know about chronic kidney disease in India:First report of the Indian CKD registry. BMC Nephrol 2012;13:10.  Back to cited text no. 1
    
2.
Ghosh R, Siddarth M, Singh N, Tyagi V, Kare PK, Banerjee BD, et al. Organochlorine pesticide level in patients with chronic kidney disease of unknown etiology and its association with renal function. Environ Health Prev Med 2017;22:49.  Back to cited text no. 2
    
3.
Almaguer M, Herrera R, Orantes CM. Chronic kidney disease of unknown etiology in agricultural communities. MEDICC Rev 2014;16:9-15.  Back to cited text no. 3
    
4.
Ranganathan N, Pechenyak B, Vyas U, Ranganathan P, DeLoach S, Falkner B, et al. Dose escalation, safety and impact of a strain-specific probiotic (Renadyl™) on stages III and IV chronic kidney disease patients. J Nephrol Ther 2013;3:3.  Back to cited text no. 4
    
5.
Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014;25:657-70.  Back to cited text no. 5
    
6.
Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ, et al. p-Cresylsulfate and indoxylsulfate level at different stages of chronic kidney disease. J Clin Lab Anal 2011;25:191-7.  Back to cited text no. 6
    
7.
Pilkey RM, Morton AR, Boffa MB, Noordhof C, Day AG, Su Y, et al. Subclinical vitamin K deficiency in hemodialysispatients. Am J Kidney Dis 2007;49:432-9.  Back to cited text no. 7
    
8.
Fernandez F, Hill MJ. Proceedings: The production of vitamin K by human intestinal bacteria. J Med Microbiol 1975;8:Pix.  Back to cited text no. 8
    
9.
Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics – A review. J Food Sci Technol 2015;52:7577-87.  Back to cited text no. 9
    
10.
Meijers BK, De Preter V, Verbeke K, Vanrenterghem Y, Evenepoel P. p-Cresylsulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 2010;25:219-24.  Back to cited text no. 10
    
11.
Krishnamurthy VM, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 2012;81:300-6.  Back to cited text no. 11
    
12.
Renye JA Jr, Somkuti GA, Garabal JI, Steinberg DH. Bacteriocin production by Streptococcus thermophilus in complex growth media. Biotechnol Lett 2016;38:1947-54.  Back to cited text no. 12
    
13.
Barefoot SF, Klaenhammer TR. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol 1983;45:1808-15.  Back to cited text no. 13
    
14.
Martinez FA, Balciunas EM, Converti A, Cotter PD, de Souza Oliveira RP. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv 2013;31:482-8.  Back to cited text no. 14
    
15.
de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 2009;20:2075-84.  Back to cited text no. 15
    
16.
Liao CY, Chung CH, Wu CC, Lin FH, Tsao CH, Wang CC, et al. Protective effect of N-acetylcysteine on progression to end-stage renal disease: Necessity for prospective clinical trial. Eur J Intern Med 2017;44:67-73.  Back to cited text no. 16
    
17.
Renke M, Tylicki L, Rutkowski P, Larczynski W, Neuwelt A, Aleksandrowicz E, et al. The effect of N-acetylcysteine on blood pressure and markers of cardiovascular risk in non-diabetic patients with chronic kidney disease: A placebo-controlled, randomized, cross-over study. Med Sci Monit 2010;16:PI13-8.  Back to cited text no. 17
    
18.
Sreedhar Mandayam and William E. Mitch-Requirements for protein, calories, and Fat in the predialysis patient. Handbook of Nutrition and the Kidney, fifth edition 2006;6:115-37.  Back to cited text no. 18
    
19.
Locatelli F, Bárány P, Covic A, De Francisco A, Del Vecchio L, Goldsmith D, et al. Kidney disease: Improving Global Outcomes guidelines on anaemia management in chronic kidney disease: A European Renal Best Practice position statement. Nephrol Dial Transplant 2013;28:1346-59.  Back to cited text no. 19
    
20.
Ranganathan N. Probiotic dietary supplementation in patients with stage III and IV chronic kidney disease. Curr Med Res Opin 2009;25:1919-30.  Back to cited text no. 20
    
21.
Miranda Alatriste PV, Urbina Arronte R, Gómez Espinosa CO, Espinosa Cuevas Mde L. Effect of probiotic on human blood urea levels in patient with chronic renal failure. Nutr Hosp 2014;29:582-90.  Back to cited text no. 21
    
22.
22. Rathi M, Sahni N, Kohli HS, Jha V, Sakhuja V. Effect of prebiotic and probiotic supplementation in CKD. Kidney Res Clin Pract 2012;31:A67.  Back to cited text no. 22
    
23.
Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 1995;125:1401-12.  Back to cited text no. 23
    
24.
Jia L, Jia Q, Yang J, Jia R, Zhang H. Efficacy of probiotics supplementation on chronic kidney disease: A systematic review and meta-analysis. Kidney Blood Press Res 2018;43:1623-35.  Back to cited text no. 24
    
25.
Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int 2015;88:958-66.  Back to cited text no. 25
    
26.
Hempel S, Newberry S, Ruelaz A, Wang Z, Miles JN, Suttorp MJ, et al. Safety of Probiotics Used to Reduce Risk and Prevent or Treat Disease. Rockville, MD: Agency for Healthcare Research and Quality; 2011. p. 200.  Back to cited text no. 26
    


    Figures

  [Figure 1], [Figure 2]



 

Top
Print this article  Email this article
 

    

Indian Journal of Nephrology
Published by Wolters Kluwer - Medknow
Online since 20th Sept '07